Friction-Stir-Spot-Welding (FSSW)

Friction-Stir-Spot-Welding (FSSW)

KI-gestützte Prognose der mechanischen Verbundeigenschaften beim Rührreibpunktschweißen

Prozessbeschreibung

Das Rührreibpunktschweißen ist ein innovatives Pressschweißverfahren, bei dem die Energiezufuhr durch Reibwärme eines rotierenden Werkzeugs erfolgt. Insbesondere beim stoffschlüssigen Fügen von Mischverbindungen z.B. aus Aluminium und Kupfer ergeben sich Vorteile aufgrund der vergleichsweise verringerten Fügetemperatur, der reduzierten Porenbildung und reduzierter Entstehung intermetallischer Phasen. Dies verbessert unter anderem die elektrische Leitfähigkeit der Fügezone und ist so besonders für Bordnetz- und Leichtbauanwendungen interessant.

Herausforderungen im Schweißprozess

Eine der größten Herausforderungen beim Rührreibpunktschweißen ist der graduelle Verschleiß des Reibwerkzeugs. Der Reibkoeffizient zwischen dem Werkzeug und der Oberfläche der zu verbindenden Materialien hat einen erheblichen Einfluss auf die Qualität des Schweißprozesses. Faktoren wie Werkzeugverschleiß und Oberflächenverschmutzungen können diesen Koeffizienten beeinflussen und somit die Verbindungseigenschaften beeinträchtigen. Darüber hinaus ist die Qualitätskontrolle der Schweißpunkte oft aufwändig und teilweise nur durch zerstörende Prüfmethoden möglich.

Lösungsansatz durch Künstliche Intelligenz

Um diese Herausforderungen zu überwinden, wird ein KI-basierter Ansatz zur Vorhersage der resultierenden mechanischen Eigenschaften, wie der Scherzugfestigkeit, genutzt. Nach Abschluss der Schweißung können die Schweißpunkte als in Ordnung (i.O.) oder nicht in Ordnung (n.i.O.) auf Grundlage der vorhergesagten Festigkeit klassifiziert werden. Zudem ermöglicht die Technologie die Detektion von Oberflächenverschmutzungen vor dem Schweißprozess und verhindert so n.i.O. Schweißungen.

Technische Umsetzung

Die Anwendung wird auf einer modifizierten Reibelementschweißanlage der Firma EJOT durchgeführt. Die Datenerfassung erfolgt über maschineninterne Sensorik, die Daten wie Drehmoment, Kraft und Weg während des Schweißvorgangs misst. Diese Daten werden anschließend an einen externen Rechner übertragen, in einer Datenbank gespeichert, aufbereitet und analysiert.

KI-Methoden und Datenanalyse

Die Analyse der Daten erfolgt mithilfe von neuronalen Netzen. Diese KI-Methoden sind in der Lage, in umfangreichen Datenmengen Muster zu erkennen. Die Ergebnisse der Analysen werden visualisiert, sodass die vorhergesagten Scherzugfestigkeiten sowie Zeitreihen des Schweißprozesses auch intuitiv von den Bedienern der Anlage interpretiert werden können.

Ergebnis

Die Implementierung dieser KI-basierten Prognosetechnik ermöglicht eine Steigerung der Effizienz und Zuverlässigkeit des Rührreibpunktschweißprozesses. Mit der visualisierten Klassifizierung der Schweißpunkte können Bediener schnell und effektiv entscheiden, ob ein Punkt den Qualitätsanforderungen entspricht. Dies führt zu einer Reduktion der Ausschussrate durch verringerten Aufwand in der Qualitätssicherung, sowie effizientere Werkzeugwechsel und in der Folge zu einer Optimierung des gesamten Fertigungsprozesses.

Durch die fortschreitende Entwicklung und Integration von KI-Technologien in die Produktionstechnik wird das Rührreibpunktschweißen zukünftig noch sicherer, schneller und kosteneffizienter. Dies ist ein entscheidender Schritt in Richtung der Automatisierung und Digitalisierung in der modernen Fertigungstechnik.

Beitrag von: M. Sc. Kai Ehlich


Video